Veronika Heimsbakk | Tales From The Road Of Text To Knowledge
KGC | The Complete Collection
•
17m
When transforming amounts of plain text into semantic knowledge graphs using Resource Description Framework, a service for automatic interpretation became apparent. Manual interpretation of text depends on human domain knowledge and discovery of entities and relationships in the text. This process is a highly time consuming activity with a risk of misinterpretation. Based on the hypothesis that using Natural Language Processing techniques we can extract information and meaning from text faster than a human being, we successfully implemented a service for automatic metadata and ontology generation for a client in Norwegian public sector. This presentation will walk you through our hypothesis, the steps from text to RDF through Natural Language Processing, and our results.
Up Next in KGC | The Complete Collection
-
Xian Li | AutoKnow: Self-Driving Know...
Can one build a knowledge graph (KG) for all products in the world? Knowledge graphs have firmly established themselves as valuable sources of information for search and question answering, and it is natural to wonder if a KG can contain information about products
offered at online retail sites.... -
Ying Ding | Katana Graph Solutions: S...
When knowledge graphs in your company get larger and larger, a scalable graph search is in high demand. In the current graph search solutions, scalability is still a big issue. Furthermore, with the fast development of deep learning on graphs, many companies rely on deep learning methods to mine ...
-
Andreas Blumauer | The Semantic Conte...
Ambiguity, language discrepancies, and lack of background information are just a few challenges that organizations face on a daily basis when trying to analyze their content and data. When an organization produces data that is hard to manage, what methodologies can be used to turn unstructured (i...