Ying Ding | Katana Graph Solutions: Scalable Graph Search & Graph Mining
KGC | The Complete Collection
•
21m
When knowledge graphs in your company get larger and larger, a scalable graph search is in high demand. In the current graph search solutions, scalability is still a big issue. Furthermore, with the fast development of deep learning on graphs, many companies rely on deep learning methods to mine insights from the ever-increasing knowledge graphs. But search and mining are usually not available in one package. This presentation will showcase the scalable solutions from Katana Graph which provide the end-to-end solutions for graph search and mining. It is ten times faster than the current market solutions and scales exponentially on graphs with billions or even trillions of nodes. It provides weighted k-shorted path searches and cutting edge graph deep learning methods (such as cluster-graph convolutional neural network, graph attention model, and graph transformer). Katana Graph is a start-up company founded by several faculty from University of Texas at Austin with the goal to provide the scalable graph search and deep graph mining in one click. In this presentation, we will showcase several use cases, such as searching and mining large scale knowledge graphs in drug discovery.
Up Next in KGC | The Complete Collection
-
Andreas Blumauer | The Semantic Conte...
Ambiguity, language discrepancies, and lack of background information are just a few challenges that organizations face on a daily basis when trying to analyze their content and data. When an organization produces data that is hard to manage, what methodologies can be used to turn unstructured (i...
-
Zhamak Dehghani | Introduction To Dat...
For over half a century organizations have assumed that data is an asset to collect more of, and data must be centralized to be useful. These assumptions have led to centralized and monolithic architectures such as data warehousing and data lake, and neither of which have been able to enable data...
-
Abhishek Mittal | Re-Imagining Regula...
Content Enrichment: Development and deployment of a 5-stage taxonomy. Applying the taxonomy to tag regulations and classify them for improved discovery & work assignment.
Smart Authoring: Leveraging advanced NLP and ML techniques to learn from the past content authoring for identification of ...