Keshav Pingali | High Performance Knowledge Graph Computing On Katana Graph
KGC | The Complete Collection
•
27m
Knowledge Graphs now power many applications across diverse industries such as FinTech, Pharma and Manufacturing. Data volumes are growing at a staggering rate, and graphs with hundreds of billions edges are not uncommon. Computations on such data sets include querying, analytics, pattern mining, and learning. In many use cases, it is necessary to combine these operations seamlessly to extract actionable intelligence as quickly as possible. Katana Graph is a start-up based in Austin and the Bay Area that is building a scale-out platform for seamless, high-performance computing on such graph data sets. We describe the key features of the Katana Graph Engine that enable high performance, and some important use cases for this technology from Katana's customers.
Bio: Keshav Pingali is the CEO of Katana Graph, a start-up in the area of graph computing backed by Intel Capital, Dell Technologies Capital, Redline Capital and Walden International, and a professor in the Department of Computer Science at the University of Texas at Austin where he holds the W.A."Tex" Moncrief Chair of Computing. He is a Foreign Member of the Academia Europeana, a Distinguished Alumnus of IIT Kanpur, India, and a Fellow of the ACM, IEEE and AAAS. He has served on the NSF CISE Advisory Committee (2009-2012), and he was co-Editor-in-Chief of the ACM Transactions on Programming Languages and Systems (2007-2010). He is the author of more 200 papers in the area of graph computing, parallel and distributed systems, and programming languages.
Keshav Pingali from Katana Graph is here to give a keynote at KGC. Keshav believes there is a need for high-performance graph computing and it is imperative to have high-speed analysis of large unstructured graph data-sets. Graph technology can be applied in many areas such as graphs for medical knowledge, improving algorithms for circuit design and many more. Introducing his company, Katana Graph helps architect graphs for handling massive graphs and increase scalability. He provides the many services his company provides such as increased load balancing of the computing of graphs and the seamless integration/easy workflow provided. #knowledgegraphs #knowledgegraphconference #knowledgegraphsoftware #knowledgegraphbigdataprocessing
Up Next in KGC | The Complete Collection
-
Konstantin Todorov | Browsing The We...
How do falsehoods spread on the web? This and other questions related to the propagation of fake news and biased discourse in the public area have been drawing increasing interest in different communities from social sciences to artificial intelligence. Online discourse, i.e. claims and opinions ...
-
Krzysztof Janowicz | Know, Know Where...
The KnowWhereGraph project aims at providing a densely interlinked knowledge graph for environmental intelligence applications and situational awareness services (area briefings) that enrich the data of decision-makers and data scientists with pre-integrated data custom-tailored to their spatial ...
-
Laura Ham | Introduction To Weaviate ...
This talk is an introduction to the vector search engine Weaviate. You will learn how storing data using vectors enables semantic search and automatic data classification. Topics like the underlying vector storage mechanism and how the pre-trained language vectorization model enables this are tou...