Dan McCreary | Graph Hardware Is Coming!
KGC | The Complete Collection
•
19m
In this presentation we will show how current general-purpose CPU hardware fails to deliver high performance graph analytics. We show that by doing a detailed analysis of the actual hardware functionally needed by graph queries (pointer jumping), we can redesign hardware that is optimized for fast graph traversal. We will also show how by combining graph and machine learning that an entire new generation of “sparse matrix” processing will move large enterprise graphs to an entire new level of capabilities. We combine an innovative use of graphics, metaphors and storytelling to help even non-technical staff understand and remember these concepts.
After this session participants will:
Understand the limitations of today’s current hardware for graph analytics
Understand the hardware and software needs of large graph analytics workloads
Understand how hardware can be redesigned for faster performance and lower power consumption
Notes for the program committee
This will not be a sales pitch for any current or future products. This will focus on understanding the concepts required for cost-effective sustainable enterprise-scale knowledge graphs.
Bios:
Dan McCreary is a Distinguished Engineer working for the Optum Advanced Technology Collaborative (ATC). He has a background in AI, Graph, and NoSQL technologies. In the past, Dan has helped build data strategies for the ATC and other business units of Optum and UHG. He is the co-author of the books “Making Sense of NoSQL” (Manning Publications) and "The State of Healthcare Technologies" (O'Reilly). His personal mission is to help organizations create objective ways to matching business problems with emerging technologies. In the past, Dan worked for Steve Jobs at NeXT Computer and Bell Labs as an integrated circuit designer. In 2018 Dan lead the Optum graph technologies project within the ATC which has resulted in the creation of the world’s largest healthcare graph. Dan continues to lead research on AI, knowledge representation, graph machine learning and graph hardware.
Nikhil M. Deshpande is the Director of AI / HPC Product Development in Data Platforms Group at Intel. He leads several advanced technology incubations and development in High Performance Compute, AI and Security. Nikhil has been invited speaker and panelist at numerous conferences and has 15+ US and international patents He holds M.S. and Ph.D. in Electrical and Computer Engineering from Portland State University. He also has M.S. in Technology Management from Oregon Graduate Institute.
#knowledgegraphs #knowledgegraphconference #knowledgegraphsoftware #knowledgegraphintheoryandpractice
Up Next in KGC | The Complete Collection
-
Freddy Lecue | On The Role Of Knowled...
Machine Learning (ML), as one of the key drivers of Artificial Intelligence, has demonstrated disruptive results in numerous industries. However one of the most fundamental problems of applying ML, and particularly Artificial Neural Network models, in critical systems is its inability to provide ...
-
Jan Hidders | A Report From The Prope...
The Property Graph Schema Working Group (PGSWG) is an informal working group that was set up in 2018 under the umbrella of LDBC, the Linked Data Benchmark Council, to support the formal working group that works on the SQL/PGQ and GQL, the upcoming ISO/IEC standards for managing property graphs. T...
-
Jay Yu | Weave Knowledge Graph Tech I...
Intuit is embarking on a multi-year journey to transform from a financial product-centric company into an "AI-driven Expert Platform" company. We have aligned our enterprise data architecture and strategy to the company growth strategy, with a clean end-to-end enterprise architecture that embrac...