-
Annotating Tabular Data using Semantic Data Dictionaries
-
Graph-Based Data Science
-
How Graphs Improve Systems Thinking
-
Paths to More Personal and Collaborative Knowledge Graphs
-
Workshop | Knowledge Infused Learning
-
Foundation for a Knowledge Graph | Taxonomy Design Best Practices
-
Startup Pitch Event
-
Modeling Sustainability
-
Intro to Data Mesh
-
Ben Szekley | How To Build Enterprise Scalability Knowledge Graph Platforms
In recently naming graph technology one of their top 10 trends data and analytic trends for 2021, the Gartner Group highlighted an emerging pattern: today an ever increasing number of F1000 organizations are implementing graph technology not to address point graph use cases, but rather data integ...
-
Andreas Blumauer | The Semantic Content Hub: Transforming Data Hurdles
Ambiguity, language discrepancies, and lack of background information are just a few challenges that organizations face on a daily basis when trying to analyze their content and data. When an organization produces data that is hard to manage, what methodologies can be used to turn unstructured (i...
-
Atanas Kirakov | Knowledge Graph Magic Map: Capabilities & Partners
Ontotext teams up with portfolio partners to offer a complete platform with best-of-bread tools for: schema and taxonomy editing; data transformation and linking; access control and federation; data updates and validation; search and visualization. The ecosystem also includes global and regional ...
-
Veronika Heimsbakk | Tales From The Road Of Text To Knowledge
When transforming amounts of plain text into semantic knowledge graphs using Resource Description Framework, a service for automatic interpretation became apparent. Manual interpretation of text depends on human domain knowledge and discovery of entities and relationships in the text. This proces...
-
Barr Moses | Data Observability: The Next Frontier Of Data Engineering
To keep pace with data’s clock speed of innovation, data engineers need to invest not only in the latest modeling and analytics tools, but also technologies that can increase data accuracy and prevent broken pipelines. The solution? Data observability, the next frontier of data engineering. I'll ...
-
Mike Tung | Automated Knowledge Graphs For Market Intelligence
Nearly every business is constantly trying to identify, analyze, and grow their market. Yet, traditional processes for data management inevitably lead to a database that contains missing, outdated, invalid, or inconsistent data. Automated knowledge graph construction techniques are a scalable w...
-
Laura Ham | Introduction To Weaviate Vector Search Engine
This talk is an introduction to the vector search engine Weaviate. You will learn how storing data using vectors enables semantic search and automatic data classification. Topics like the underlying vector storage mechanism and how the pre-trained language vectorization model enables this are tou...
-
Stefan Plantikow | The Upcoming GQL Standard
Following the GQL Manifesto, the ISO working group that develops the SQL standard voted to initiate a project for a new database language: GQL (Graph Query Language). This talk presents an overview of the goals of GQL and the progress so far, key aspects of the language design such as the basic d...
-
Luke Feeney | Why A Knowledge Graph Is Best For Distributed Collaboration
There has been an explosion of tools - especially in the machine learning space - describing themselves as ‘git for data’. This talk will review the main open source players and link the interest to data mesh architectures. Not to jump to outcomes without first conducting the review, but it will ...
-
Michael Cafarella | Infrastructure For Knowledge Graph Application Programming
Social Knowledge Graphs such as Wikidata have become massive successes, obtaining a level of coverage and quality that would be the envy of many traditional relational database engineering projects. And yet the downstream use scenarios for such datasets remain sharply limited compared to the vast...
-
Roi Krakovski | The Usearch Contextual Graph
We exploit the recent breakthroughs in Neuroscience to build web search engines based entirely on AI-generated data, thus eliminating the need to collect users’ data. We show how to generate search queries that are almost identical to real users’ queries. We use the generated queries to build a ...
-
Krzysztof Janowicz | Know, Know Where, KnowWhereGraph
The KnowWhereGraph project aims at providing a densely interlinked knowledge graph for environmental intelligence applications and situational awareness services (area briefings) that enrich the data of decision-makers and data scientists with pre-integrated data custom-tailored to their spatial ...
-
Neda Abolhassani & Teresa Tung | Accelerating Industry Data Integration
A data supply chain is industry-specific, but many data prep tools are industry agnostic. As part doing this work, data engineers and domain experts apply their deep knowledge of how to transform raw data to a form that can address specific problems. In this way, the data supply chain is a doma...
-
Julian Grummer | What Can We Learn From Knowledge Graphs: A Wirecard Perspective
The Wirecard scandal was one of the most shocking economic events in Germany in 2020. The former DAX30 company collapsed on June 25, owing creditors more than €3.5 billion (almost $4 billion) after disclosing a gaping hole in its books that its auditor EY said was the result of a sophisticated gl...
-
Mohammed Aaser | Future Of Enterprise Data Management
Many organizations have initiated data and analytics transformations with some success, however are beginning to face challenges in scaling efforts beyond a handful of applications/use cases. One of the major barriers remains around data management, including challenges with data transparency, i...