Spotting Signals in Text via Natural Language Understanding
Natural Language Processing (NLP) Track | KGC 2023
•
30m
Signals are emerging pieces of information relevant to a given context and offer potential for strategic advantage in a multitude of domains. However, sorting the signal from noise on large textual data is a very tedious process for humans. We introduce a scalable approach that extracts signals from hundreds of crawled sources and maps their metadata to a knowledge graph by exploiting state-of-the-art neural models for natural language understanding.
Up Next in Natural Language Processing (NLP) Track | KGC 2023
-
DRUGS4COVID: KG about drugs used in t...
The main objective of Drugs4Covid is to create resources, following the principles of Open Science, that facilitate the extraction of knowledge from scientific literature related to the Coronavirus. These resources can be used by scientific communities that carry out research in relation to SARS-...
-
Knowledge Graph Treatments for Halluc...
Despite the excitement about Large Language Models (LLM), these models suffer from hallucinations problems, e.g., generating factually incorrect text. These problems restrict the development of production-ready applications. This talk will highlight the importance of combining Knowledge Graphs wi...
-
Unleash the value of unstructured dat...
Significant portions of the data generated in enterprises are unstructured and text-based. This can span the entire product lifecycle, from early research to post-launch analysis. A major challenge for companies is managing these vast amounts of text data and extracting hidden and valuable inform...