Alex Kalinowski | Structured To Unstructured & Back: Integrated KG and NLP
KGC21 | Conference Only Pass
•
21m
Identification of entities and the relations between them is a difficult task for traditional pattern-based matching or machine learning approaches; these techniques rapidly overfit training datasets and struggle to transfer to other contexts or domains. Utilizing outside knowledge, such as facts contained in a knowledge base or ontology, seems to be a solution to the lack of transferability. However, integrating unstructured text data and language models with highly structured resources such as knowledge bases is a challenging research problem. Using concepts from distant supervision, word vectors and knowledge graph embeddings, an elegant unsupervised learning approach will be presented for solving this knowledge integration problem. This talk is to view the problem from both points-of-view: the natural language processing practitioner unaccustomed to semantics and knowledge bases, and the semantic web developer without a background in deep learning and language models.
Revised Description:
It is a difficult task for traditional pattern-based matching or machine learning approaches to identify entities and the relationships they share. These techniques rapidly overfit training datasets and struggle to transfer to other contexts or domains. One solution to the lack of transferability includes the utilization of outside knowledge, such as facts contained in a knowledge base or ontology. However, integrating unstructured data such as language models with highly structured data such as knowledge bases is a challenging research problem.
Using concepts from distant supervision, word vectors, and knowledge graph embeddings, an elegant unsupervised learning approach will be presented for solving this knowledge integration problem. This talk illustrates the problem from two points-of-view: the natural language processing practitioner unaccustomed to semantics and knowledge bases, and the semantic web developer without a background in deep learning and language models.
Alexander Kalinoski works on tasks as a knowledge graph engineer at Wells Fargo Bank. This video provides his insight on where users are to identify elements in a collection of unstructured data and tackling it in one way or another may leave a lot to be desired, but Kalinoski believes they can tackle it from different directions simultaneously. Kalinoski provides use cases where his solution can lead to the verification of ontology, decrease in cost and time and help identify gaps in graphs.
#knowledgegraphs #knowledgegraphconference #knowledgegraphschema #knowledgegraphandbigdataprocessing
Up Next in KGC21 | Conference Only Pass
-
Luke Feeney | Why A Knowledge Graph I...
There has been an explosion of tools - especially in the machine learning space - describing themselves as ‘git for data’. This talk will review the main open source players and link the interest to data mesh architectures. Not to jump to outcomes without first conducting the review, but it will ...
-
Stefan Plantikow | The Upcoming GQL S...
Following the GQL Manifesto, the ISO working group that develops the SQL standard voted to initiate a project for a new database language: GQL (Graph Query Language). This talk presents an overview of the goals of GQL and the progress so far, key aspects of the language design such as the basic d...
-
Mike Tung | Automated Knowledge Graph...
Nearly every business is constantly trying to identify, analyze, and grow their market. Yet, traditional processes for data management inevitably lead to a database that contains missing, outdated, invalid, or inconsistent data. Automated knowledge graph construction techniques are a scalable w...