Explainable AI using Background Knowledge
May 11 | KGC 2023
•
26m
One of the current key challenges in Explainable AI is in correctly interpreting activations of hidden neurons. It seems evident that accurate interpretations thereof would provide insights into the question what a deep learning system has internally detected as relevant on the input, thus lifting some of the black box character of deep learning systems.
The state of the art on this front indicates that hidden node activations appear to be interpretable in a way that makes sense to humans, at least in some cases. Yet, systematic automated methods that would be able to first hypothesize an interpretation of a hidden neuron activations, and then verify it, are mostly missing.
In this presentation, we provide such a method and demonstrate that it provides meaningful interpretations. It is based on using large-scale background knowledge – a class hierarchy of approx. 2 million classes curated from the Wikipedia Concept Hierarchy – together with a symbolic reasoning approach called concept induction based on description logics that was originally developed for applications in the Semantic Web field. Our results show that we can automatically attach meaningful labels from the background knowledge to individual neurons in the dense layer through a hypothesis and verification process.
Up Next in May 11 | KGC 2023
-
Combatting & Measuring Fraud: GAO's U...
Fraud hurts the integrity of US federal programs and erodes the public’s trust in the government. To assist agencies with combatting fraud and to improve its measurement through common definitions, GAO has developed the GAO Fraud Ontology. The model addresses the key elements of what occurs in a ...
-
Graph Embedding Techniques - Matrix F...
Graph embeddings can be used for a variety of applications, including recommendation, fraud detection, and other machine learning tasks. In this work, we aim to walk through various different embedding techniques, starting with spectral approaches, moving towards graph neural networks, and finall...
-
When Not to Use a Graph db for Your K...
When people think of knowledge graphs and graph analytics they reflexively think they need a specialized database. That answer is often incomplete or just wrong for their workload.
We’ll analyze the 11 access patterns involved in graph analytics and build a logical and physical reference architec...